Review

IVF, IVM, natural cycle IVF, minimal stimulation
IVF – time for a rethink

Professor Bob Edwards succeeded with colleagues in fertilizing the human egg *in vitro* in 1969. Then he applied IVF clinically with Patrick Steptoe working from Cambridge University, later establishing Bourn Hall Clinic. He has been awarded numerous honorary DSc degrees and published many scientific papers and books, including *A Matter of Life* with Patrick Steptoe in 1980. Recent awards include the Lasker Clinical Medical Research Award (2001), Grand Hamdan Award for Clinical Science (2002), and the Pioneer in Stem Cells Award from Pittsburgh Development Center, USA (2004). In 2005, he won the highest award of the RCOG, the Eardley Holland Gold Medal. In 2006, he received the 30th Joseph Bolivar DeLee Humanitarian Award from Chicago Lying-in Hospital, as well as an Honorary Doctorate of Medicine from the Karolinska Institutet, Sweden. This year (2007) he was honoured twice in France, becoming a Chevalier dans l’Ordre National de la Legion d’Honneur, and winning the Jacques Salat-Baroux Prize. He was also appointed Honorary Fellow of the Institute of Biology in the UK.

Abstract

Considerable changes are afoot in the practice of assisted human conception. Doubts about its methods, especially over endocrinology, concern its complexity and its expense. IVF has spread worldwide since its beginnings in the UK, but its current practice, termed routine IVF, is being challenged by simpler routines. These include natural cycle IVF, where doses of hormones are reduced, and the *in-vitro* maturation of human oocytes ready for fertilization *in vitro* (IVM). These three approaches are now practised in increasing numbers of IVF clinics, and may well replace routine IVF. The events leading to current interest in these methods will be discussed briefly in this review.

Keywords: gonadotrophins, IVF, minimal stimulation, oocyte maturation *in vitro*, ovarian hyperstimulation

Introduction

I am honoured to open this important meeting. It is very timely. It stresses that a new phase of assisted human conception is opening with the realization that methods currently in use to stimulate follicle growth and ovulation in infertile patients are too extreme and too expensive. Routine IVF, as we know it, is currently under close scrutiny as queries arise about the need for high doses of costly recombinant hormones, gonadotrophin-releasing hormone (GnRH) agonists and antagonists. The cost of these hormones and the complexities of their use in ovarian stimulation are the primary objections, although simpler laboratory techniques may also be introduced, based on IVF practice in animals. Alternative approaches are therefore being sought, including minimal stimulation IVF, natural cycle IVF and maturing human oocytes *in vitro* to prepare them for fertilization *in vitro*. Each of these approaches avoids the use of large doses of human menopausal gonadotrophins (HMG) and human chorionic gonadotrophin (HCG) that have become essential for routine IVF. The following text is based largely on contributions to these new approaches to IVF from my colleagues and me.

Early studies on the endocrine induction of ovulation in animals

Routine IVF emerged from research on animal reproduction that was gained in the nineteenth and twentieth centuries when very little was known about human conception. Studies were pursued on follicle growth, ovulation, fertilization and early embryonic growth in mammals, as well illustrated when Heape (1880) introduced embryo transfers in rabbits and obtained full-term offspring. The tempo increased in the early twentieth century as shown, for example, by Lewis and Gregory (1929), who filmed cleaving rabbit eggs to blastocyst stages including hatching from the zona pellucida, and by Lewis and Hartman (1933), who studied cleaving eggs of Rhesus monkeys. Studies on 32 human embryos flushed from the oviduct after intercourse revealed anomalous forms, including chromosomal defects and abnormal forms that increased with advancing maternal age (Hertig et al., 1952). Analyses on the timing of ovum transport in the female reproductive tract revealed the various stages of...
Studies on the endocrinology of mammalian reproduction also accelerated in the early twentieth century. Research by Ascheim and Zondek (1927) led to a greater awareness of pituitary gonadotrophins and ovarian feedback systems, and too many studies on the role of the hypothalamus (see Lunenfeld, 1969). Endocrine aspects of the complex hypothalamic/pituitary/ovarian axis, for example, clarified hypothalamic responses to sensory systems and secretions from the limbic system (MacLean, 1973). The decapetide structure of LHRH and its role in controlling the release of FSH and LH were discovered by Schally in 1978, and its pulsatile release was clarified by Knobil (1974). Knowledge also accumulated on its daily, nyctericine (sleep), hourly and sporadic rhythms (Kleitman, 1969; Rebar and Yen, 1979; Edwards et al., 1980a). The hypothalamic co-ordination of these systems was sealed by the discovery of the hypothalamic/pituitary portal vessels (Harris and Naftolin, 1970; Holmes and Ball, 1974), since this anatomical knowledge revealed how LHRH stimulated pituitary gonadotrophes to release FSH, LH and prolactin, and so stimulate gonadal differentiation (Everett, 1969). In turn, greater understanding of the role of gonadotrophins in regulating the growth of ovarian follicles and their oocytes led to studies on endogenous hormones that could be purified from pituitary glands, blood or urine. The availability of these hormones then resulted in their use as endocrine preparations for use in the stimulation of reproductive systems in animals and humans (Rebar and Yen, 1979; Edwards, 1980).

Epidemiologists had clarified various aspects of human reproduction. Birth rates, the epidemiology of conception and infertility, and the frequency of abortion were linked to studies on the chances of conception in women during natural mating (Leridon, 1979). Conception often required several menstrual cycles before pregnancy was established, with involuntary childlessness afflicting ~10% of UK couples and 28% of US couples aged 35 and older (Southam, 1960; Hirsch and Mosher, 1987). Problems with ovulatory disorders, primary and secondary amenorrhea, tubal blockage, cervical hostility, oligozoospermia and azoospermia were well recognized among other factors leading to male and female infertility. Diagnoses of infertility included rising body temperature in women, tests and cervical mucus, disturbed hormonal rhythms, tubal repair, sperm assays and artificial insemination.

Treatments with available exogenous hormones were now designed to stimulate ovarian function in animals, and hormonal extracts from the pituitary gland, blood or placenta were utilized to induce ovulation and oestrus in various animals. A belief emerged that such stimulatory treatments were effective in immature animals but not in adults, e.g. in rabbits (Walton and Hammond, 1928; Fee and Parkes, 1929; Parkes, 1976). Similar beliefs applied to studies involving induced oocyte maturation and ovulation in immature female mice injected with pregnant mare’s serum (PMS) as a source of FSH, and then with human chorionic gonadotrophin (HCG) as a source of LH (Runner and Palm, 1953). The immature mice entered oestrus, mated and ovulated soon after the HCG injection. Large numbers of eggs were recovered from their oviducts and uterus, some of them being transferred into uteri of non-pregnant adult females to establish many pregnancies. This evidence showed how embryos established via injections of gonadotrophins into immature mice were fully capable of implantation and growth to full term (Gates and Beatty, 1954).

In a tentative move to the use of gonadotrophins in adult females, Fowler and Edwards (1957) initiated the use of PMS and HCG to induce multiovulation and pregnancy in adult female mice. Given small doses of hormones, virtually every adult female simultaneously entered oestrus from 6 h post-HCG, ovulated numerous oocytes at 12 h post-HCG, mated with a male and produced large numbers of fertilized eggs. Endocrine systems such as diurnal rhythms or the stage of the oestrus cycle when PMS was given had few or no effects on responses to exogenous gonadotrophins. Oocytes in each of the stimulated mice matured and ovulated at exactly the same rate (Figure 1). Diakinesis was observed 2–3 h post-HCG (Figure 2), with full maturation to metaphase 2, the extrusion of the first polar body and the onset of ovulation occurring at ~11.5 h. Fertilization and cleavage of the embryos also progressed in synchrony in virtually all of the treated mice. Close timing was found to be typically species-specific in each of the mammalian species that were examined. Numbers of ovulated oocytes and embryos varied between 10 to 50 or more, and embryos implanted in considerable numbers in their mothers’ uteri, far more than in natural cycles. Accordingly, multiple pregnancies were established, averaging 30 implanted embryos or thereabouts (Edwards and Fowler, 1959).

Oocyte maturation in vitro

An alternative approach now emerged to the use of endocrine stimulation to obtain pre-ovulatory oocytes. It involved aspirating oocytes in germinal vesicle stages from their Graafian follicles and then placing them in culture media. This initiated their maturation in vitro to metaphase II and the extrusion of their first polar body, showing they were ready for fertilization in vitro. These studies began in the 1930s when Pincus and Enzmann (1935) and Pincus and Saunders (1939) reported that immature rabbit oocytes matured spontaneously in vitro over 12 h after liberation from their follicles into culture media. Their investigations also concluded that human oocytes likewise matured in 12 h, but this was an unfortunate error.

Seeking to introduce human IVF into clinical care for infertility, and wishing to stimulate oocyte growth from the germinal vesicle stages to metaphase II and an extruded polar body, Edwards (1965) rediscovered the work by Pincus and Enzmann (1935) and Pincus and Saunders (1939). These authors reported that immature mouse, rat and rabbit oocytes matured in 12 h or so, and that human oocytes required the same amount of time. Edwards (1965) concurred with the timings as being ~12 h in mice, rats and rabbits, whereas oocytes from cattle, sheep, rhesus monkey and humans required longer intervals in vitro, e.g. ~31 h in cows and rhesus monkeys, ~37 h in humans and ca 40 h in pigs (Figures 1 and 2). Maturing oocytes in vitro was simple, required no hormones and opened pathways to studies on oocyte maturation and fertilization in vitro. Moreover, the timings for full maturation in vitro to metaphase II after an injection of HCG in various species were found to be identical with the timing of oocyte maturation in vitro (Edwards, 1965).
Figure 1. Timing the stages of meiosis I after an injection of HCG, showing the onset of prophase I, the timings of metaphase I, anaphase I and telophase I until the extrusion of the first polar body and the onset of metaphase II and ovulation. Numbers represent individual oocytes, for example the female autopsied at 8 h provided six oocytes in metaphase I and two in anaphase I. Note how the first ovulation began at 11 h, and the great majority had ovulated by 13 h.

Figure 2. Examples of diakinesis, a late stage in the first meiotic division, in maturing oocytes of (a) mice and (b) humans. Mouse oocytes required 4 h to reach this stage of meiosis and 11.5 h to complete maturation, whereas human oocytes (right) needed ~23 h to reach diakinesis and 37 h to complete their maturation (Edwards, 1965).
Pincus and Saunders (1939) had sadly misled later workers (Chian et al., 2004) contemplating the introduction of in-vitro maturation (IVM) because of a lack of awareness of the structure of meiotic chromosomes, especially those in diakinesis, which were excellent markers of the meiotic resumption after a long delay in diplotene (Figure 2).

Since human oocytes required 37 h to mature in vitro, it was a simple matter to predict that women would ovulate 37 h after an injection of HCG. This was confirmed some years later when laparoscopy enabled follicles in human ovaries to be visualized very clearly as they ruptured during ovulation at 37 h post-HCG (Steptoe and Edwards, 1970). This information proved to be invaluable for the development of human IVF.

Endocrine stimulation of ovarian and oocyte maturation

Attention in the later twentieth century was increasingly paid to the endocrine stimulation of follicle growth and oocyte maturation in humans and in adults of various animal species. Gemzell et al. (1975) induced ovulation in amenorrhoeic women by initially administering FSH preparations extracted from human pituitary glands followed a few days later by an injection of HCG to induce ovulation. Pregnancies were established, but many were multiple including octuplets, since numbers of ovulated eggs could not be controlled as shown previously in mice (Fowler and Edwards, 1957). Samples of human urinary menopausal gonadotrophins (HMG) were now given to oligomenorrhoeic women to stimulate the growth of several ovarian follicles, followed by HCG to induce ovulation (Klopper et al., 1974). Methods improved further when Donini and Lunenfeld (1974) prepared highly purified, FSH-rich preparations of HMG that could be obtained commercially (named Pergonal), and used it with HCG to stimulate ovulation in oligomenorrhoeic and amenorrhoeic women.

Two distinct means of obtaining human eggs at metaphase II and with an extruded first polar body were now available. They could be aspirated from growing Graafian follicles and matured in vitro for 37 h as just described, or gained by administering modest doses of HMG and HCG to patients in order to stimulate several follicles to mature and then aspirating their pre-ovulatory oocytes at 36 h post-HCG, just before the follicles were about to ovulate. Ripe oocytes had to be aspirated an hour or so before the follicles ruptured for ovulation, otherwise they could have been lost in the peritoneal cavity. While pondering on whether to choose hormonal stimulation or maturation in vitro as the best approach to human IVF, Chang (1955) reported that he had matured rabbit oocytes in vitro and then transferred them to oviducts of mated female recipients to see if the embryos developed normally. Some were found to be abnormal. This discovery militated against choosing to mature human oocytes in vitro for IVF, especially since there had been no reports of anomalies among children born to amenorrhoeic mothers after stimulation by HMG/HCG. The decision was therefore taken to use the endocrine method for human IVF.

My interest in alleviating human infertility via human IVF had now extended to using mild doses of HMG and HCG to induce oocyte maturation in the patients and then to aspirate ripe oocytes from their follicles, ready for fertilization. The practical application of this work would be based on earlier work in stimulating ovulation in adult cyclic mice, on studies by Gemzell and others that would involve testing various hormonal treatments in patients, and by the availability of Pergonal (Figures 3 and 4). It would be essential to work in rhythm with the menstrual cycle to avoid any hormonal complications. Human IVF would thus involve controlling follicle maturation by means of HMG and HCG, and a clinically acceptable method of approaching follicles to aspirate their oocytes. Low doses of hormones were selected which should produce an average of five or six oocytes per patient. A good rate of fertilization in vitro would be expected to provide sufficient embryos for replacement to the mother’s uterus.

Giving patients three doses of HMG in their follicular stage, each dose composed of three ampoules, should be sufficient to stimulate the maturation of several follicles containing mature oocytes (Figure 3a). Daily measurements of urinary oestrogens and pregnanediol would help to assess follicular responses in each patient. HCG would be injected around day 10–11 when oestrogen concentrations should have risen to confirm that several follicles had responded to HCG. Pre-ovulatory follicles were aspirated 36 h later, just before the onset of ovulation. This course of action become possible as Jean Purdy (nurse) and Patrick Steptoe (gynaecologist and world expert in laparoscopy) joined the team. Proposals designed to introduce human IVF therefore began in the late 1960s, and it had to be arranged in the Oldham and District General Hospital where Patrick had his patients. Oldham was almost 200 miles from Cambridge so I was destined to travel this journey there and back for 10 years in order to maintain my duties with PhD students in Cambridge University.

Fertilization in vitro

The major problem in introducing human IVF now lay in the successful fertilization of human oocytes in vitro. Sufficient mature oocytes would be available, but an apparently difficult problem lay in the need to capacitate the spermatozoa. Research on several animals had revealed this process to be seemingly essential for sperm attachment to oocytes and later stages of fertilization, and it was often achieved by collecting uterine spermatozoa for use in insemination (Austin, 1952, 1975). Only a single study had succeeded using oocytes in vitro, namely Yanagimachi and Chang (1964) working with gametes from golden hamsters. In 1969, human oocytes aspirated from their follicles after hormonal stimulation were successfully fertilized in vitro without any need for capacitation unless it had occurred spontaneously (Edwards et al., 1969). All stages of fertilization to late pronuclear stages were identified. The way was now open to mature and fertilize human oocytes in vitro, and replace the resulting embryos into the uterus of infertile couples. Unexpected problems now arose in relation to hormonal stimulation.

Ovarian stimulation and its problems

Low doses of administered gonadotrophins provided sufficient follicles to sustain IVF. Mean numbers of follicles averaged 9.2 with 300–377 IU of HMG, rising to 11.4 with 975–1125
Figure 3. (a) Treatments with HMG and HCG in Oldham during early 1970s. Usually three ampoules were given per injection (Edwards, 1965). (b) Treatment with clomiphene/HMG/HCG.

Figure 4. Cluster analysis of follicles in natural or induced cycles based on concentrations of progesterone, 17α-hydroxyprogesterone, oestradiol-17β, oestrone, androstenedione, testosterone, pregnanediol and 17α-hydroprogesterone in follicular fluid (Fowler et al., 1978); (a) natural cycle, (b) induced cycle. Follicles could be classed as non-ovulatory or ovulatory from their appearance during laparoscopy when their follicular fluids were aspirated. Notice the clear separation into ovulatory and non-ovulatory follicles in natural cycles. In contrast, numerous classes of variant follicles followed treatment with HMG/HCG and it was difficult to decide which of four major groups of follicles were ovulatory or non-ovulatory. These immense variations implied that enormous differences arose between follicles after ovarian stimulation.
IU (Edwards and Steptoe, 1975; Edwards et al., 1980a). Large and presumably ripe follicles increased from a mean of 2.2–5.6 within the same dose limits. Oocytes were aspirated from 46% of follicles sized <1 cm, rising to 73% from those sized >1.75 cm (Steptoe and Edwards, 1970). Aspirating oocytes did not harm the formation of the corpus luteum, which synthesized progesterone in luteal phase of the cycle. The types of steroids in aspirated follicular fluids reflected the stage of the menstrual cycle at the moment of aspiration. Oestrogens and some androgens typified follicular stages, and progesterone dominated follicles approaching ovulation.

Cluster analyses on concentrations of several steroids in follicular fluids aspirated in mid-cycle revealed two major follicular classes, separated by a large within group variance (Figure 4a). One class was ovulatory and the other non-ovulatory, as would be expected in a normal menstrual cycle. In stimulated patients cluster analyses differed, since differences between follicles were far less and there seemed to a continuum from one class to the other. In contrast, concentrations of various steroids in fluids aspirated from follicles of patients stimulated with HMG and HCG displayed immense variations (Figure 4b) (Fowler et al., 1978). Such varying degrees of maturity might have led to variations in embryo quality, although this matter has not yet been solved even today (Wang et al., 2006). It was nevertheless very clear that injecting HMG had stimulated some follicles to grow that would have otherwise decayed.

Second, several variations in follicular activity concerning diurnal and other rhythms in LH activity in some IVF patients was noted. For example, gonadotrophins are released into peripheral circulation in pulses every 90–100 min coincident with rapid eye movement (REM) sleep (Kleitmen, 1969). No attempts were made to utilize pulsatile injections of HMG when patients enrolled for IVF. A daily rhythm was discovered in the onset of the LH surge in UK patients, with concentrations beginning to rise at 3 a.m. in synchrony with rising cortical concentrations. In contrast, newly arrived US patients attending Bourn Hall for IVF initiated their daily LH rhythm at 7 a.m. after the onset of their treatment (Figure 5a). Those staying in the UK until their second attempt at IVF shifted their diurnal rhythm to 3 a.m., indicating they were adapting to UK time (Edwards, 1980). Variable cortisol and LH rhythms also characterized patients coming from North America as they waited for their second cycle, although once again it was unclear if such variations influenced success with IVF. The strength of seasonal rhythms also modified the onset of patients’ LH surge (Figure 5b), another endocrinological factor that may have affected success with IVF, since this rhythm was well marked in winter but weakened in summer. Once again, numbers were too few to study the implications of their varying menstrual rhythms on the efficacy of treatment with HMG/HCG (Edwards, 1980).

A complex endocrine situation emerged in patients stimulated with HMG/HCG after a decision had been taken to transfer a single blastocyst to them on the assumption that humans would be as fertile as mice, rabbits and other animal species. Unexpectedly, many of them displayed a shortened luteal phase. This was associated with a lack of IVF pregnancies, since the duration of their luteal phases varied between 6 and 14 days, which was insufficient to sustain embryo implantation in many of them (Figure 6). Its causes remained unknown, although it was positively related to the total output of urinary oestrogens during their luteal phase. Treatments with HMG/HCG had apparently led to varying concentrations of oestrogens, which had harmed the corpus luteum. Feichtinger et al. (1982) attributed luteal phase deficiency as being at least partially due to aspirating many follicular cells just as ovulation was imminent. Daily progesterone support was clearly needed to correct this and any other cause of luteal phase defect in order to establish pregnancies. Patients would have to be given this treatment until week 8 of pregnancy, when the placenta begins to produce progesterone.

These short luteal phases in our patients led to near-disaster in our IVF programme. It was clear that patients required daily injections of progesterone in oil over several weeks until the placenta began to produce progesterone. This approach could cause scabbing in our patients, so instead Primolut depot was given three or four times during the luteal phase, since it was sold by Schering as a progestagen. It should have sustained the single blastocyst that had been transferred to their mother but, unfortunately, Primolut depot was also an abortifacient. It actually destroyed embryos soon after they had implanted, a fact revealed some time later when patients’ blood samples over the expected period of implantation after embryo transfer were found to contain short-term increases in HCG, indicative of a lost early pregnancy. Several short-term pregnancies had obviously been established but then destroyed and overlooked in our patients. We named these brief implantations ‘biochemical pregnancies’.

Establishing the first full-term pregnancies after IVF

Steptoe’s final days with the UK National Health Service were ending so we accelerated our Oldham IVF programme. A series of novel approaches were therefore tested in order to achieve an IVF pregnancy. One new approach stemmed from the discovery by Greenblatt et al. (1961) that clomiphene citrate induced ovarian stimulation and a full luteal phase in infertile patients (Kistner, 1975). Combinations of clomiphene and HMG (clomiphene/HMG) were tested to establish a normal luteal phase (Figure 3b). Bromocryptine/HMG was also assessed, since it reduced high prolactin concentrations in our patients. Injecting spermatozoa and a single oocyte into the Fallopian tubes was tested, a method later named gamete intra-Fallopian transfer, or GIFT. Primolut was discarded and the first clinical IVF pregnancy anywhere in the world was established by means of clomiphene/HMG (Steptoe and Edwards, 1976). Sadly for our patients, Steptoe diagnosed it as being ectopic at 10 weeks’ gestation and it had to be removed. Yet we now knew that two great problem had been solved, namely that my culture methods and ovarian stimulation with clomiphene/HMG had sustained a human embryo capable of developing for 10 weeks in vivo. Secondly the moderate use of HMG had indicated that minimal dose IVF had established and sustained this embryo. Human IVF was on the way!

Obsessed by attempts to avert short luteal phases after ovarian stimulation, we abandoned this in favour of natural cycle IVF. This demanded measuring urinary LH concentrations to time the onset of the LH surge preparatory to ovulation. Urinary concentrations run behind plasma concentrations, so
Figure 5. Two examples of endocrine rhythms in patients being treated for IVF (Edwards et al., 1980b). (a) Diurnal rhythms in a US patient attending Bourn Hall for IVF treatment. Urinary LH concentrations rose at 7 a.m. during their first treatment cycle, and at 3 a.m. during their second treatment cycle as they corrected to UK time. (b) The onset of LH surges is shown in patients awaiting IVF treatment. Notice the distinct diurnal rhythm in winter and the weakest rhythm in summer.

Figure 6. The duration of shortened luteal phases in patients treated with HMG/HCG was related to the concentrations of urinary oestrogens in their follicular phase.
it was estimated that ovulation would occur ca. 32 h after the urinary LH surge. A sedimentation assay named Higonavis (Mochida Pharmaceuticals, Brocades), adapted to measure urinary LH, was a rapid assay fully capable of measuring LH concentrations in urine samples collected and assayed every 3 h (Figure 7). In practice, it was found to provide sufficient timely information on the LH surge to determine when laparoscopy would be needed to aspirate the maturing oocyte from its preovulatory follicle. This form of natural cycle IVF accorded exactly with fundamental events of the menstrual cycle and avoided any need for exogenous gonadotrophins.

The second patient on natural cycle IVF was Lesley Brown. Her LH surge was detected, her pre-ovulatory oocyte aspirated and inseminated within an hour, and her 8-cell embryo replaced late on day 2 of her luteal phase. Transplanting 8-cell embryos instead of blastocysts shortened the period of embryonic growth in vitro and placed the embryo in its natural setting in the uterine cavity much sooner than offered by blastocyst transfers at day 5. Later cases of natural cycle IVF resulted in the first three more IVF babies, the first and second proceeding normally to term in 1978 and 1979. The third fetus was fully normal, as it was aborted at mid-term and lived for only 3 days, as a consequence of its parents taking a walking holiday in the Yorkshire hills. The fourth pregnancy was discovered to have a triploid fetus, which was removed from its mother’s uterus.

These results ended the Oldham phase of IVF. Bourn Hall was opened 2 years after the birth of Louise, this delay being due to the need to convert it into the world’s first IVF clinic. Numerous pregnancies were immediately established using natural cycle IVF (Table 1) or ovarian stimulation with clomiphene/HMG/HCG. Numbers rose to ~100 in a year or so and to 1000 in 6–7 years (Edwards et al., 1984). By today, routine IVF has produced well over 3 million babies. Dissatisfaction with some of its aspects rose to the point where many clinics decided to modify the current routine of IVF and introduce simpler measures. Different IVF clinics decided their own approaches to new forms of IVF, a situation recalling the earliest days of IVF and the need to select either ovarian stimulation with mild doses of HMG and HCG or mature human oocytes in vitro and avoid any need for hormonal stimulation.

Clinics could now select routine IVF, minimal stimulation IVF, natural cycle IVF or IVM. Routine IVF still appealed to most clinicians and scientists as IVF clinics opened worldwide and established numerous pregnancies. Natural cycle IVF was practised spasmodically, and Lopata (1980) established a full-term pregnancy with it before switching to clomiphene/HMG and obtaining several more. Minimal stimulation IVF was achieved in some clinics, and IVM was pursued by rare clinics without establishing any pregnancies. Trounson et al. (1981) stimulated patients with clomiphene citrate or clomiphene/HMG, transferred two embryos and obtained several pregnancies, some of them twins. Other forms of treatment were introduced as experience with routine IVF spread widely (e.g. Testart et al., 1983). These were the years when ultrasonic control over the aspirating needle began to replace the laparoscope (Wikland et al., 1983).

Hormonal stimulation becomes more complex

Methods for ovarian hyperstimulation now became much more complex (Table 2). Contraceptives were used by some clinics to stabilize the menstrual cycle before Pergonal was injected. Endocrinologists introduced GnRH agonists and antagonists to provide a better control over FSH and LH concentrations during follicular and luteal phases of stimulated cycles including the correction of premature LH surges (Porter et al., 1984; Engel et al., 2005). Recombinant FSH, LH were introduced to avoid the use of urinary products which were claimed to be less specific in their actions and difficult to obtain in amounts sufficient to satisfy demand (Loumaye, 1990; Bergh et al., 1997). Occasional cases of hyperstimulation and polycystic ovaries arose during this treatment. Recombinant HCG was introduced later and was very effective in providing luteal phase support in hyperstimulated cycles and to induce ovulation in treatment cycles (Trenchard-Lugan et al., 2002). Pregnancy rates nevertheless remained very low at ca. 15–20%, whatever form of stimulation was employed.

Low pregnancy rates led to three and more embryos being replaced in some clinics, resulting in numerous multiple pregnancies, many of them twins, triplets and often more. It still remains uncertain if the use of recombinant gonadotrophins has offered better pregnancy rates than those gained with urinary preparations, despite their very high cost. Insulin was now recognized as an important factor in hyperstimulation, and metformin is being used to reduce aromatase activity and steroidogenesis and so reduce the risks of polycystic ovarian syndrome. It might also serve to replace FSH, when given at 8-h intervals from before the onset of stimulation, continuing until the first β-HCG assay for pregnancy. Claims have been made for its effectiveness and various investigators remain unconvinced about its value in controlling polycystic ovaries (la Marca et al., 2003; Genazzani et al., 2004; Khattab et al., 2006). Metformin may have other advantages in lowering concentrations of endothelial and coagulation markers, including soluble adhesion molecule and soluble intercellular adhesion molecule.

Pregnancy rates improved and multiple pregnancies declined as new methods identified the best-quality embryos for transfer. This was achieved by timing the first and second cleavage divisions in vitro and transferring one or two of the fastest-growing embryos. This led to pregnancy rates of 12.9% when slow-growing embryos were transferred versus 42.3% with fast-growing embryos (Edwards et al., 1984). High-quality embryos could also identified by scoring them for fragmenting blastomeres or multiple nuclei within blastomeres. New culture media also improved embryonic growth to blastocysts, and microarrays are currently entering clinical practice embryos to enable selection for desirable genes.

Further developments improved the practice of IVF and preimplantation genetic diagnosis during the 1990s. Intracytoplasmic sperm injection (ICSI) was introduced by Palermo et al. (1992) and spread worldwide. Offering a simple method of replacing normal fertilization by injecting a single spermatozoon into a mature oocyte, it replaced the need to inseminate oocytes with hundreds or more spermatozoa. Its benefits included treatments for severe male infertility when very few testicular spermatozoa were available. It also avoided the attachment of many spermatozoa to the zona pellucida after insemination in vitro, which raised problems for preimplantation genetic diagnosis.
Figure 7. Endocrinology of patients attending for natural cycle IVF using HiGonavis as a rapid sedimentation assay for LH. Total oestrogens and pregnanediol in urine measured the growth and differentiation of the follicles, and Higonavis enabled the onset of the LH surge to be identified in the majority of patients. Radioimmunoassays were used as a confirmation (Edwards et al., 1980b).

Table 1. Experience with natural cycle IVF in Bourn Hall.

<table>
<thead>
<tr>
<th>Results October 1981–January 1982</th>
<th>Fate of first 101 natural cycle and clomid pregnancies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases 35</td>
<td>Patients delivered 57</td>
</tr>
<tr>
<td>With aspirated oocyte 29</td>
<td>Babies 59</td>
</tr>
<tr>
<td>Fertilized eggs 25</td>
<td>Third trimester 3</td>
</tr>
<tr>
<td>Replacements 24</td>
<td>Abortions 26 (30)</td>
</tr>
<tr>
<td>Clinical pregnancies (%) 6 (25)</td>
<td>Biochemical 15 (15)</td>
</tr>
</tbody>
</table>

Adapted from Edwards (1983).

Table 2. Successive stages in the history of ovarian stimulation for human IVF between 1970 and 2000.

<table>
<thead>
<tr>
<th>Time period</th>
<th>Stimulation agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970s</td>
<td>HMG, HCG or clomiphene, HCG</td>
</tr>
<tr>
<td>1980s</td>
<td>Clomiphene, HMG, HCG</td>
</tr>
<tr>
<td>1990s</td>
<td>GnRH agonist, HMG, HCG</td>
</tr>
<tr>
<td>1995</td>
<td>HMG, GnRH antagonist, HCG</td>
</tr>
<tr>
<td>1998</td>
<td>GnRH agonist, HMG, HCG/GnRH/rLH</td>
</tr>
<tr>
<td>2000</td>
<td>GnRH, rFSH, rLH</td>
</tr>
</tbody>
</table>

Italics indicate agents used to induce ovulation.
Another novelty raised pregnancy rates to still higher levels. Involving the use of FISH (fluorescent in-situ hybridization), chromosomal complements in fertilized eggs could be identified and those that were heteroploid, polyploid, carried translocations or other cytogenetic anomalies could be discarded (Kuliev et al., 2005; Munné, 2006). Chromosomal anomalies were found to arise in as many as ~50% of all human embryos growing in vitro, and pregnancy rates reached as high as 50% or more when one or two embryos diagnosed as normal were replaced. This considerable improvement above previous success rates occurred just as doubts began to emerge about the cost and efficacy of natural cycle IVF.

Can new concepts offer simpler alternatives for ovarian stimulation?

Has the time now arrived to jettison routine IVF in favour of minimal stimulation IVF, natural cycle IVF or IVM? Can improvements be achieved in routine IVF, just as several of its problems were solved in Oldham in the 1970s? In fact, several possibilities of improving routine IVF that were known in the earliest days of routine persist today. For example, the fact that LHRH has pulsatile release during natural cycles, as shown by Knobil (1974) working with rhesus monkeys, has simply been overlooked together with any deleterious effects that may have been induced in IVF clinics administering large doses of GnRH agonists and antagonists, or using stimuli leading to high concentrations of oestrogens in their patients.

Three successive events occurring during natural menstrual cycles are controlled by timing the actions of different gonadotrophins, steroids and other regulatory factors (Le Nestour et al., 1993). The first step in follicular recruitment is decided by FSH dominance, and the last step in follicular maturation involves LH dominance. The former is difficult to detect, so its exact timing in stimulated cycles has been largely overlooked. Substituting the first day of menses as a satisfactory measure of the onset of a new cycle thus has a weak endocrinological basis. Le Nestour et al. (1993) also suggest that the exact timing of the LH surge leading to ovulation cannot be predicted prospectively during the natural cycle, although it was tediously achieved, for example, during Leslie Brown’s menstrual cycle that led to the birth of her daughter. Timing this phase is usually achieved by triggering ovulation through an injection of HCG, but this can be easily mistimed and may shorten the final part of the follicular phase. Likewise, the incorrect timing of GnRH antagonists may result in falling concentrations of oestrogens, which disturbs menstrual rhythms.

A better approach controlling the correct concentrations of FSH and LH is achieved by administering controlled concentrations of oestradiol ~3 days before menstruation is expected. Le Nestour et al. (1993) stress the significant role of gonadotrophin surge attenuating factor (GnSAF) in co-ordinating the menstrual cycle. It controls LH and its mid-cycle surge by antagonizing the surge-promoting activity of oestradiol, and further refinements of this hypothesis may improve results with both routine and minimal stimulation IVF (see de Ziegler et al. in this Symposium). Other major developments may yet be introduced to control menstrual rhythms and improve routine IVF.

Minimal stimulation IVF, and natural cycle IVF to a lesser degree, could replace routine IV inhibin, activin and follistatin F in many IVF clinics. In a sense, both represent steps in the development of routine IVF. Their techniques are virtually identical and highly sensitive methods are now available to detect the onset of the LH surge (Stenman et al., 1985). Novel techniques such as these have stimulated some clinics to abandon the use of large doses of urinary or recombinant gonadotrophins in normal or poor responders in favour of tests on minimal stimulation IVF and natural cycle IVF. Caution was long overdue as evidence accumulated on the delicacy of feedback systems such as the systemic roles of hypothalamic GnRH, the ovarian steroids oestradiol and progesterone, and the gonadal peptides inhibin, activin and follistatin on the secretions of pituitary gonadotrophins (Le Nestour et al., 1993). Oestradiol accordingly has a major role in determining concentrations of FSH at the luteal–follicular transition, and the need for care in stimulating patients became increasingly clear. The need for change was first mooted by an appeal to reduce doses of gonadotrophins and pay close attention to doses given to patients with specific defects in their menstrual cycles (Edwards et al., 1996). Minimal stimulation IVF is obviously very close to routine IVF, and differs mainly in its utilization of smaller doses of hormones. It has a major advantage of avoiding the production of high oestrogens that may damage maturing oocytes and even distort chromosomal segregation. Used in the earliest days of routine IVF, it could have been chosen by many clinics, although it fell out of favour as treatments involved increasing doses of urinary or recombinant gonadotrophins in the early 1990s (Howles, 2006). It may indeed have been chosen as routine practice in the 1970s, had we chosen a different progestagen than Primolut depot in attempts to avert short luteal phases.

Is IVM the preferred choice for human assisted conception today? Its clinical application has recently been described in detail by Tan et al. (2007). A major departure from routine IVF, the long period when many investigators failed to obtain births with this technique has been left well behind (Mikkelsen, 2005). By today, many clinics now achieve results with IVM that are equivalent to routine IVF (Table 3). Until recently, many patients attending for IVM had polycystic ovaries where numerous small follicles lie just below the ovarian surface, but similar treatments are now given to patients with normal ovaries. Methods initially successful when used for patients with polycystic ovaries have now been applied to those with normal cycles. Practitioners do not need high doses of HMG and use very small doses or none at all. A similar situation applies to HCG. Bleeding from aspirated small follicles has been reduced by modifying structure of aspirating needles. As many as 50 or more oocytes can be plucked from available follicles on some occasions, which challenge success rates attained with routine IVF. Improvements in oocyte cryopreservation imply that follicles can be aspirated at any stage of the menstrual cycle and their oocytes preserved until needed by their parents for later use (Boldt et al., 2006). With hindsight, should we have developed IVM rather than ovarian stimulation in 1969? Even then, its obvious advantages in avoiding high gonadotrophin doses and the availability of vast numbers of oocytes, especially from polycystic ovaries and the numerous small follicles growing in the follicular stage, was apparent. New methods of aspirating oocytes will enable them to be collected from Graafian follicles in early stages of growth and before they become sensitive...
to FSH. At any one time, the numbers of such follicles are considerable and vary from several thousands in younger ages to more than 1000 at the age of 50 years (Table 4) (Faddy and Gosden, 1995). Perhaps we were over-influenced by the advantages of induced ovulation, for example the safety offered to pre-ovulatory oocytes as they pass through their maturation phases within their follicles. Their immediate insemination in vitro very soon after their aspiration is a further advantage. Nevertheless, current evidence indicates that IVM has come to stay. It will switch attention away from studies on embryos, which have dominated with routine IVF, in favour of studies on oocytes in ovulatory and non-ovulatory follicles. Attention will be given to the genetics and biochemistry of follicles and oocytes as they grow and mature for 37 h after aspiration (e.g. Harris and Picton, 2007). The nature of the regulatory genes involved in crucial stages of oocyte formation and maturation will be clarified by microarrays, and genes regulating maternal influences on early development should enhance knowledge on quantitative inheritance and the roles of particular genes that are active between gamete formation and implantation. Research on oocytes as they are placed in culture media to initiate their maturation may help to identify and correct those meiotic factors leading to disorders in chromosomal segregation. Averting chromosomal disorders and their induction by high concentrations of ovarian oestrogens in follicular fluid must be another potential advantage of IVM. It would help every clinic practising IVM and other forms of IVF.

What are the embryonic risks of IVM? One concerns the period of 37 h needed for maturation in vitro, since inadequate media, poor temperature control or incorrect gas phases might enhance damage to oocytes as they mature. Another risk may be associated with the formation of anomalous embryos as described by Chang (1955). So far, reports on chromosomal anomalies in embryos derived using IVM are lacking and are urgently awaited. Does the fact the oocytes were never exposed to events occurring during a normal menstrual cycle imply that they may not be fully normal? Yet, all in all, the advantages of IVM seem to far outweigh its disadvantages.

To conclude this brief review, mention must be made of the immense amounts of information already gained on genetics and biochemistry of the oocyte gained from IVM (Table 5). These topics have been discussed in detail in the recent publication of In-Vitro Maturation of Human Oocytes, edited by Tan et al. (2007). Excellent chapters on oocyte growth and developmental competence are discussed by Thomas and Vanderhyden (2006), follicular metabolism by Harris and Picton (2007) and Picton et al. (2007), gene expression in oocytes during growth and maturation by Eichenlaub-Ritter (2007) and Swain and Smith (2007), and epigenetic changes during oocyte growth by Fortier and Trasler (2007) (Table 5). The development in vitro of small ovarian follicles is covered by Abir et al. (2007) and Hreinsson et al. (2007). Together with the other chapters on clinical aspects of IVM, this wealth of information is essential to those intent on practising IVM. These papers point to an astonishing future.

Table 3. Recent studies on maturing human oocytes in vitro.

(a) Data from Chian et al. (2004), on IVM in Seoul and in Montreal.
(b) Data of Mikkelsen et al. (2001) in Copenhagen.

<table>
<thead>
<tr>
<th></th>
<th>Seoul</th>
<th>Montreal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycles</td>
<td>419</td>
<td>254</td>
</tr>
<tr>
<td>Patient age</td>
<td>32.2</td>
<td>32.4</td>
</tr>
<tr>
<td>Oocytes</td>
<td>6860</td>
<td>3079</td>
</tr>
<tr>
<td>Matured</td>
<td>5021 (75)</td>
<td>2426 (79)</td>
</tr>
<tr>
<td>Fertilized</td>
<td>3967 (78)</td>
<td>1679 (69)</td>
</tr>
<tr>
<td>Cleaved ova</td>
<td>n/a</td>
<td>1509</td>
</tr>
<tr>
<td>Transferred</td>
<td>1816 (4.3)</td>
<td>865 (3.4)</td>
</tr>
<tr>
<td>Pregnancies/cycle</td>
<td>137 (30.3)</td>
<td>61 (24.1)</td>
</tr>
<tr>
<td>Implants/transfer</td>
<td>211 (11.6)</td>
<td>96 (11.1)</td>
</tr>
</tbody>
</table>

Values in brackets represent percentages, those in curly brackets represent means.
n/a = not available.

<table>
<thead>
<tr>
<th></th>
<th>Medium with maternal serum</th>
<th>Medium with serum albumin</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2 oocytes</td>
<td>47/74</td>
<td>26/73</td>
</tr>
<tr>
<td>Pregnancies</td>
<td>5/18</td>
<td>0/23</td>
</tr>
<tr>
<td>Children</td>
<td>7 (2 twin sets)</td>
<td></td>
</tr>
</tbody>
</table>

Patients: mostly PCO/PCOS, some cyclic. Treatment: FSH day 5–6, aspiration day 8–9.
Medium: 199, pyruvate, oestradiol, FSH, HCG, maternal serum/serum albumin, granulosa cells.
Luteal support: oestradiol and progesterone.
Table 4. Maternal age and the numbers of human ovarian follicles egressing from the follicular pool. Data on age given in two sections, the upper one covering daily egress from stage III and the lower one showing the numbers of follicles remaining in the ovaries at ages 19 and 50. Modified from Faddy and Gosden (1995).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Follicle numbersa</th>
</tr>
</thead>
<tbody>
<tr>
<td>29–30</td>
<td>31</td>
</tr>
<tr>
<td>39–40</td>
<td>9</td>
</tr>
<tr>
<td>49–50</td>
<td>1</td>
</tr>
<tr>
<td>Folliclesb</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>300,000</td>
</tr>
<tr>
<td>50</td>
<td>1500</td>
</tr>
</tbody>
</table>

aAge and daily egress from stage III, 2+ granulosa layers.
bRemaining follicles with age. High death rates of small follicles.

Table 5. Factors affecting meiotic arrest and its resumption chromosomal segregation and maternal effects in early development.

<table>
<thead>
<tr>
<th>Cytogenetic and molecular aspects of oocyte growth and maturation</th>
<th>Determinants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event</td>
<td></td>
</tr>
<tr>
<td>Arrest in early growth</td>
<td>Cumulus cAMP; oocyte protein kinase A</td>
</tr>
<tr>
<td>Meiotic resumption</td>
<td>Cumulus protein kinase C (PKC), oocyte MPF, CDK1/cyclin B</td>
</tr>
<tr>
<td>Cohesion</td>
<td>Physical association of chromosome until anaphase</td>
</tr>
<tr>
<td>Microtubular polymerization</td>
<td>GSk3 controls</td>
</tr>
<tr>
<td>Cohesion relieved</td>
<td>Microtubular forces overcome</td>
</tr>
<tr>
<td>Chromosomal separation</td>
<td>Separatase</td>
</tr>
<tr>
<td>Crossovers disjoin</td>
<td>Perhaps via PP1/PP2A</td>
</tr>
<tr>
<td>Disordered segregation</td>
<td>To be found</td>
</tr>
<tr>
<td>Meiotic re-arrest</td>
<td>Metaphase two cytosol, MPF, Mos</td>
</tr>
<tr>
<td>Polar body extrusion</td>
<td>MAPK, actin microfilaments</td>
</tr>
<tr>
<td>Oocyte transcripts functioning at meiotic resumption</td>
<td></td>
</tr>
<tr>
<td>Factor</td>
<td>Determinants</td>
</tr>
<tr>
<td>Nucleoplasmin</td>
<td>Heat-shock factor 1</td>
</tr>
<tr>
<td>Brahma-related gene</td>
<td>Formin 2</td>
</tr>
<tr>
<td>Zygotic arrest</td>
<td>Mater</td>
</tr>
<tr>
<td>Dnmtlo (transferase)</td>
<td>Stella</td>
</tr>
<tr>
<td>Epigenetic factors</td>
<td>Mediator</td>
</tr>
<tr>
<td>Histones 3 and 3</td>
<td>DNA methylation</td>
</tr>
<tr>
<td>Transcriptional regression</td>
<td>Polycomb group</td>
</tr>
<tr>
<td>Translocational activation</td>
<td>Trithorax group</td>
</tr>
<tr>
<td>TrxG enzymes</td>
<td>Enhanced by histone acetylation</td>
</tr>
</tbody>
</table>

Based on data from Eichenlaub-Ritter (2006); Swain and Smith (2006); Fortier and Trasler (2007).
and provide back-up for what may be the largest surprise of all, namely that new follicles may develop from bone marrow in children and adults (Johnson et al., 2004, 2005). If they descend from haemangioblasts, then follicles and other tissues might be prepared from a drop of blood in the same manner as discussed in relation to the use of cord blood stem cells (Edwards and Hollands, 2007). In other words, we would carry stem cells in our blood including those that may be able to form oocytes? Time will tell.

References

Croxatto HB, Ortiz ME, Diaz S et al. 1978 Studies on the duration of egg transport by the human oviduct. II. Ovum location at various intervals following the luteinising hormone peak. American Journal of Obstetrics and Gynecology 30, 408–414.

Genazzani AD, Battaglia C, Malavasi B et al. 2004 Metformin administration modulates and restores luteinizing hormone spontaneous episodic secretions and ovarian function in nonobese patients with polycystic ovary syndrome. Fertility and Sterility 81, 114–119.

Johnson J, Bagley J, Skaznik-Wilkiewicz M 2005 Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow.

La Marca A, Morgante G, Palumbo M et al. 2002 Insulin-lowering treatment reduced aromatase activity in response to follicle-stimulating hormone in women with polycystic ovary syndrome. *Fertility and Sterility* **78**, 1234–1239.

Received 14 March 2007; refereed 3 April 2007; accepted 2 May 2007.